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PART I.

GENERAL INVESTIGATION OF THE SYMBOLIC FORMS.

(1.) THERE can be no doubt, that time and ingenuity have been often wasted in
devising systems of notation, and new methods of algebraical representation, which
have never proved of any service in advancing the cause of science. It is not sur-
prising, therefore, that symbolical innovations, if they have not the strongest and
most obvious reasons to recommend them, are generally reccived with little favour
by mathematicians. At the same time, it must not be forgotten, that the mind has
wonderfully enlarged its powers of research by the symbolization of its abstract
conceptions, and that the various additions which have been made, from time to
time, to mathematical notation, have contributed largely to the progress of physical
investigation ; witness, for instance, the applications of the negative sign, indices,
logarithms, coordinate equations, the differential algorithm, &ec.

A new notation, or a new application of an old notation, ought, in all cases, to be
called for by some want in science, that is, by the existence of some important and
often occurring conception for which there is no adequate, or at least no sufficiently
general mode of representation. It should be neither artificial nor complicated, but
natural and simple: it should also be based on principles of established authority,
and framed according to allowed precedents. And, lastly, it should be capable of
something more than mere elementary applications, and be recommended by its
utility in the higher and more abstruse branches of science.

With these cautions before me, and on these grounds, I venture, in the present
paper, to propose a new use of an old notation, which appears to me to supply a
want of considerable importance, as I hope to show by the remarkable simplifications
which it introduces into many difficult investigations, There is an operation, if I
may so call it, of constant occurrence in Geometry and Physics, which consists in
the translation of a directed magnitude, that is, the parallel motion of a magnitude
possessing the property of direction, such, for example, as a force, a velocity, traced
line, or the like. This translation, as it may be easily shown, is always an operation
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162 REV. M. O'BRIEN ON SYMBOLIC FORMS DERIVED FROM THE CONCEPTION

of the kind called “ distributive,” and from its distributiveness all its properties in a
great measure follow as necessary consequences. Now this is a fact of great import-
ance to be borne in mind, a thing to which the truly mathematical adage “when
Jound make a note of fully applies. There is no notation actually in use for this
purpose; but there are two nearly obsolete signs, which by an easy and natural
generalization, and according to the most approved rules of mathematical interpreta-
tion, might be made to serve effectually as representatives of the effects produced
generally by the translation of a directed magnitude. My design, in what follows,
is to show this, and establish the laws according to which these signs are to be used
in their enlarged signification. Afterwards I shall endeavour to justify the proposed
innovation, if such it is to be considered, by showing its utility in a variety of cases.
(2.) Instances which suggest the proposed symbolization.—There are three ele-
mentary conceptions which have suggested to my mind the principles which it is the
object of this paper to develope, and they will serve here as means of introducing
the subject, and furnish the best foundation to build upon. They are the following :—
Ist. The generation of surface by the parallel motion of a right line, Fig. 1.
of which the simplest instance is a parallelogram ABCD supposed B ¢
to be generated by the motion of AB, parallel to itself, along AD.— g
2ndly. The effect produced on a rigid body by the translation of a Jorce & ?
acting upon it from one point A to another B, the direction of the Fig. 2.
force remaining unaltered; which effect, as is well known, consists
in that peculiar tendency to motion that results from the action of
the couple composed of the force at B, and a force equal and oppo-
site to the original force at A.—3rdly. The effect produced by the
translation of a force resulting from the actual motion of its point
of application ; which effect is now usually designated by the term work. If the
point of application be supposed to describe the path ADB, the force Fig 3.
all the time acting parallel to its original direction, a certain amount
of work is accumulated in consequence of the translation of the Z
force, and this is the effect I allude to. . /
Now in each of these cases the conception in the mind is that of )
the effect produced by the translation of a directed magnitude ; and T
what is worthy of special remark is this, that in each of these cases the effect alluded
to is represented by the product of two factors, one being the translated magnitude, and
the other the amount of translation it undergoes. Thus, in the case shown by figure 1,
the surface generated is denoted by the product of AB into the perpendicular or
lateral distance between AB and CD; of which, AB is the translated magnitude,
and the perpendicular the amount of translation that takes place laterally. In the
case shown by figure 2, the effect is also represented by the product of the translated
magnitude, that is, the force, into the amount of luteral translation. In the case
shown by figure 3, if we suppose BC to be the direction of the force produced back-
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ward to meet a perpendicular AC let fall from A upon it, the effect produced, that is,
the work accumulated, is represented by the product of the translated magnitude
(the force, namely,) into the amount of translation which takes place, not laterally,
as before, but longitudinally, that is, along the direction of the force, which longitu-
dinal translation is manifestly CB.

(8.) From these three instances the idea naturally arises of some necessary connec-
tion between the translation of a directed magnitude and the product of the two
factors, the magnitude translated and the amount of translation ; or, to say the least,
there appears to be some ground for conceiving that the product in question may be
the proper form of notation for representing the translation. And, secondly, the
necessity of distinguishing between lateral and longitudinal translation is clearly
indicated, inasmuch as the longitudinal effect is zero in the first two cases, while the
lateral effect is zero in the third case, Taking my clue from these suggestions, I
shall now proceed to explain my proposed method of notation; observing, that my
object is to make it as general as possible consistently with definiteness and utility,
and that, for this reason, I shall employ all the generalizations of the elementary
algebraical signs which are now admitted by mathematicians.

I shall also adopt, to a certain extent, the views of Symbolical Algebra taken by
the late Mr. Grecory, and published by him in several papers, but especially in one
read before the Royal Society of Edinburgh on the Foundations of Algebra. I may
observe, however, that my proposed method of notation does not assume the correct-
ness of these views, and might be enunciated independently of them; but they
appear to my mind to form the most satisfactory theory of Symbolical Algebra.

I. PRELIMINARY DEFINITIONS, STATEMENTS, ETC,

(4.) Directed Magnitude.—1 use this term to denote any of those magnitudes
which we represent graphically by arrows ; remarking that an arrow represents three
things, viz. an origin or point of application, marked by its feather-extremity ; a par-
ticular magnitude represented by its length; and a particular direction shown by the
barb. -

(5.) Translation, Lateral and Longitudinal— Transla- Fig. 4.

tion” is the term employed to denote that peculiar and B/

simplest change of position of a rigid body which consists r/
in the parallel and equal motion of all its component
particles. I shall use the same term to denote a change %/ %/
of position of a directed magnitude without change of A B
direction, as is shown in fig. 4. The translation therefore / e /
of a directed magnitude consists in simple alteration of / ve
“origin,” as from A to B in the figure. "/ /

But this alteration of origin is of a fwofold nature, E/
being partly lateral and partly longitudinal. 1f CD be the indefinite line of direction
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in which the arrow at A lies, and EF that in which the arrow at B lies, the transla-
tion from A to B consists of two distinct motions; namely, the shifting of the line
of direction from CD to EF, and the shifting of the origin along the line of direction
through a space amounting to GB. The former I shall call lateral and the latter
longitudinal translation.
If v denote a directed magnitude which is supposed to be trans- Fig. 5.
lated from A to B, and if » denote the line AB, I shall speak of the
translation as that of v along w; a proper mode of expression, be- /
cause every point of the representative arrow v undergoes a motion z
equivalent in magnitude and direction to ». The translation of v
along u is lateral when the angle at A is 90°, and longitudinal when 0°.

(6.) Distributiveness—If f (x) be a function of x whlch possesses the property
expressed by the equation

| S@)+A) =f@+a),

it is said to be a distributive function of x. If » be any number positive, negative,
integral or fractional, it may be shown from this equation that

S#)=Cxz,

C denoting a quantity independent of x, namely the value of f(x) when x=1. If x
be not a number, but some symbol, whether of specific quantity or operation, the
notation Cz has no meaning recognised in ordinary algebra. Hence, following the
well-known precedent of indices *, we may generalize the meaning of Cx by assuming
it to be the symbolical form for denoting every function, f (x), which is distributive.

If we further suppose, that f(x), and therefore C, is a distributive function of
another independent variable y, we shall find that

C=Cy and .. Cr=C'zy.
Thus we may, by the same process of generalization, assume C'zy to be the symbolical -
Jorm for denoting every function of x and y which is distributive with regard to both
zand y. C here is manifestly the value of the function when =1 and y=1. Now
if we adopt C' to be the unit of the function, as, in fact, we do in many cases of
ordinary products, the symbolic form for denoting the function becomes simply zy.
(7.) This appears to me to be the simplest and best method of defining the nota-
tion xy in Symbolical Algebra; though I need not avail myself of it here as it is not
necessary for my purpose. All I require is some simple notation for denoting a dis-
tributive function of two variables; for, as I hope to show, this distributiveness is a
characteristic of great importance to be distinctly “noted” in the case of the trans-
lation of a directed magnitude. Now there are three different forms in which a pro-
duct is written in ordinary algebra, viz. 4y x.y and xXy: of these, the latter two

‘are now seldom used, and there is no necessity whatever for this redundancy of

* o has no meaning, according to its original definition, except r be a positive integer: but we give it a

meaning by defining @ to be the notation for every function f (#) which possesses the property f(2)f(y) =f(z+¥).
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forms for denoting the same thing. Instead, therefore, of inventing new symbols for
representing distributive functions, I shall venture to appropriate the almost obsolete
forms x.y and Xy to the purpose. At the same time it must be borne in mind,
that, according to the views of many eminent mathematicians, the product of # and y
in Symbolical Algebra may be defined to be any distributive function of # and y, and
thus the appropriation of 2.y and x Xy here proposed is nothing more than a legiti-
mate application of these forms.

(8.) I shall therefore assume x.y and xXy to be symbolical forms for denoting
distributive functions of # and y ; in other words, I shall consider x.y and xXy to
be completely defined by the equations

z.y+a . y=(x+2).y eXy+ad Xy=(r+2') Xy
v.ytey=2(y+y)  aXy+aeXy=ex(y+y),
just as the symbolic form a™ is completely defined by the equation a™a"=a™*".

(9.) Whether z.y and Xy are «Commutative” functions of  and Y, i.e. whether
z.y=y.x,and rX y=y Xz, does not appear from these defining equations, and there-
fore it must be decided by the particular nature of the quantity or operation which
each of these forms is assumed to represent. ‘

(10.) Signification of the sign 4. In Symbolical Algebra the sign 4 may be re-
garded as simply an abbreviation for the words “ fogether with,” and thus u--v means
simply u “ together with” v, or w and v “ put together.” Now these words “ together
with” may be taken in a great variety of senses, as the following examples taken
from ordinary algebra show, viz.

345=8,  38+455.=780d., 344/ —1=(24+./—1),

5 miles east45 miles west=0, &e. &ec.
In the first example + means a “ putting together” by simple numerical addition ; in
the second, a * putting together” of certain pieces of gold and silver, with reference
to a certain conventional value set on them ; in the third, a mere symbolical * putting
together;” and so on. Hence it is clear that in using the sign - as an abbreviation
of the words * together with,” the precise nature of the “ putting fogether” is supposed
to be understood in each case. I shall therefore define the notation, #--v, to mean,
u and v put together in a sense supposed to be understood.

Now in some cases it is very important that the precise nature of the * putting to-
gether” denoted by the sign + should be clearly understood, and therefore distinctly
specified. This it will be necessary for me to do here with reference to two remark-
able significations which have been given to the sign 4.

(11.) The first is that signification given to 4 in Symbolical Geometry. If » and v
denote two lines of certain magnitudes and drawn in certain direc- Fig. 6.
tions, then w-v is assumed to denote u and v put together as in the ‘

figure 6 ; that is, the beginning-point or origin of v coinciding with the /v
end-point (if 1 may so use the words) of . The second signification - *
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is that given to 4 in Symbolical Mechanics. If » and v denote two Fig. 7.
forces of certain magnitudes and directions, u4v is assumed to denote

u and v put together as in figure 7 ; that is, the origin of v coinciding, not "Z

with the end-point, as before, but with the origin of u. The distinction I w
allude to here is of considerable importance, and requires to be very closely attended
to in applying lines to represent forces generally, as will appear. It might be well
to distinguish these two significations of 4+ by appropriate terms. I cannot think
of any better words, for the purpose, than the two, « successive,” and * simultaneous;”
the putting together in fig. 6 is manifestly effected by tracing the two lines in imme-
diate succession, while that in fig. 7 is a simultaneous application at the same origin.
I shall therefore call the putting together in fig. 6 successive addition, and that in fig. 7
stmultaneous addition.

(12.) Signification of the sign =. Like 4-, the sign = denotes equivalence in a
certain sense supposed to be understood ; thus in the example, 3£-+5s.=780d., it denotes
equivalence as regards the conventional value of certain coins. In  Fig. s,
Symbolical Geometry = has reference to the change of position of the )
tracing-point by which lines are supposed to be drawn. Thus if u, v, w %
denote three traced lines, the equation, u-4v=w, means, that the = %
tracing of u-+-v is the same thing as the tracing of w, so far as the change of position
of the tracing-point is concerned. In this sense it is clear, that w must be the third
side of the triangle in fig. 8. In Symbolical Mechanics = has reference  Fig. 9.
to mechanical effect. - Thus if u, v, w be three forces, the equation, v
u-+v=w, means, that the mechanical effect of u+v is the same as that ”V
of w ; in other words, it means, that w is the resultant of v and v. T

(13.) Representation of Forces by Lines. The suitability of lines to represent forces
is obvious enough in ordinary Mechanics, where 4 has the signification of mere
numerical addition ; but when we come to Symbolical Mechanics this suitability is
no longer a thing to be assumed. A little consideration will show that the question,
« Can we assume lines to represent forces generally ? ” may be stated symbolically as
follows, viz. If the lines w and v respectively represent the forces U and V, in mag-
nitude and direction, will #-4v also represent U4V in magnitude and direction ? if
not, the graphical mode of representation becomes inadmissible symbolically. Now,
it is clear, by reference to figures 8 and 9, that this question amounts to asking,
whether the Parallelogram of Forces is true or not? for the peculiar signification of
+ in Symbolical Geometry makes u-v denote the diagonal of the parallelogram
constructed on « and v as sides ; whereas the Mechanical signification of + in U4V
makes it denote the resultant of U and V.

Hence it follows that the general representation of forces by lines assumes the
truth of the Parallelogram of Forces as a necessary condition; and, consequently,
any symbolical proof of the Parallelogram of Forces which assumes that lines may
be taken generally as representatives of forces, amounts to reasoning in a circle.
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My object here, however, in the remarks just made, is to point out the importance
of distinctly marking the two significations of the sign .

(14.) In all cases that I shall be concerned with, successive and simultaneous addi-
tion are virtually equivalent, so far as the representation of directed magnitudes by
lines is concerned. As regards the statical effect of forces, the Parallelogram of
Forces shows this: as regards the dynamical effect, the Second Law of Motion (I
mean NEwron’s 2nd Law) does the same. As regards velocities and displacements
the thing is obvious.

(15.) Directed Units. 1shall call an arrow of a unity of length (whether it represents
a traced line, a force, a velocity, or any other kind of directed magnitude) a  directed
unit.” 1 shall always reserve the letters o, 8, ¥ to denote a set of three directed
units at right angles to each other. Hence, if AX, AY, AZ be

three rectangular axes to which «, 8, y are respectively parallel ; le?g. o

and if @, y, = denote numerically the three coordinates of any

point P; xa, yB3, 2y will be the symbols representing these three w sz
coordinates in magnitude and direction, inasmuch as re means Sy x

x directed units put fogether by successive or geometrical addi-
tion, all in the direction parallel to AX; and so also as regards
yP and zy. Also if u be taken to denote the line AP in magni- ¥
tude and direction, we have, by successive addition,
u=ze+yB-+-=3y.

The point P is often called the point (xyz), I may therefore speak of it as the point
(u), inasmuch as » completely defines its position.

If X, Y, Z denote numerically three forces parallel to AX, AY, AZ, it is clear that
their complete symbolical representatives are Xe«, YB, Zy. Also, if U denote the
resultant of these three forces, we have

U=Xa+YB+Zy.
But here + denotes simultaneous addition: we may, however, assuming the trath
of the Parallelogram of Forces, regard it as the successive 4, if we please.

(16.) As just observed, I shall always suppose «, 3, ¥ to be a set of ¢hree rectangular
directed units ; 1 shall suppose the same also as regards o, 8, ¢/ ; 2", 8, ¥, &e., using
the dashes to denote different sets of directed units; but the three in each set are
always assumed to be at right angles to each other,unless the contrary be specified.

In speaking of lines as regards magnitude and direction, I shall always use the
word “direction” as equivalent to “directed unit;” thus I shall call & the “ direc-
tion” of the line xe. The complete symbol of a line may be therefore described as izs
direction multiplied by its magnitude.

(17.) If » denote the magnitude, and o« the direction of », u=r«/, and therefore,
putting for u its value above, we find

X 4
o =Za+2B+7,
or o =ao-+4bB3-+cy,
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where @, b and ¢ denote the cosines of the angles which «' makes with «, 8 and ¥
respectively.
If ' lies in the plane («8), and if 4 denote the angle which &' makes with «, this
expression becomes
e'=e cos 043 sin 4.

(18.) According to the principles of Symbolical Algebra, we have

B=—1a, y=—10, o=—1ty, ("‘%:\/:—T)
But it is to be remembered that the sign —* here does not denote the same identical
operation in these three cases; nor is it necessary that it should, any more than the
sign —. The true state of the case is this, that (—%)a is defined by the equation
(=) (—He=—a;
and the general solution of this equation is
—3e= cos §+4ysind,
where 4 is perfectly arbitrary. Consequently the extraction of the square root of —
gives, not simply two values, positive and negative, as in ordinary extractions of the
square root, but an infinite number of values, namely the whole circle of directed
units at right angles to a.

I shall have no occasion to make any use of the sign —%, or any reference to the
connections just given between «, 3 and v, except in some future applications of my
method, chiefly in Geometry. The statement just made is intended to show what
«, 3, v are with reference to the square roots of — (or —1), and to point out distinctly
that «, B, ¥ are not supposed to be square roots of unity, but merely direction-units.
 (19.) Remarkable signification of de, df3, dy. 'This signification I pointed out and
made use of in a paper read before the Cambridge Philosophical Society (Nov. 1846),
and it may be briefly stated here for the purpose of reference in certain applications
of the present method. If e« and &' be two directed-units at an in- Fig. 11.
definitely small angle to each other, we have &/ —a=dz ; but ¢'—a is "
the line joining the extremities of ¢ and «', and this line is at right % .
angles to « and &' (ultimately), because « and ' are lines of equal «
length. Hence de is the expression for an indefinitely small line at right angles to .

This signification of dw is one of great importance in Symbolical Geometry and
Mechanics : thus for example, if «, 8, y denote direction-units fized in a rigid body,
the angular velocities of the rigid body are represented, in magnitude and direction, by

de dB  dy

e’ A’ dr

inasmuch as de, dB, dy represent, in magnitude and direction, the small angles
described in the time ¢ by the extremities of these three direction-units. Of course
I mean by the word “angle,” here, the circular arc which measures it. The im-
portance of this signification of de, dB, dy will be manifest in many parts of what
follows.
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II. SymBoLicAL REPRESENTATION OF THE TWO EFFECTS PRODUCED BY THE TRANSLATION
oF A DIrRECTED MAGNITUDE.

(20.) The Effects symbolized.—It has been shown that the translation of v along u
is, generally, of a twofold nature, partly lateral and partly longitu-  Fig. 12.
dinal; it is my object to express symbolically the effects produced,
whether they are geometrical or mechanical effects, by the two kinds qZ//
of translation. The effect produced by the lateral part of the transla- w
tion of v along w I shall call the lateral effect, and that produced by the longitudinal
part, the longitudinal effect.

(21.) The two Effects are, each, Distributive Functions of u and v. Let f (u, v)
denote the lateral effect of the translation of v along wu; Fig. 13.
let » and « represent the lines AB and BB'; produce /
the arrows (v) both ways indefinitely to show the lines
of direction in which v lies in the three parallel positions
at A, B, and B'; draw AGH and BG' at right angles to
these parallel lines of direction (CD, EF, E'F'). Observe,
that v, » and « are not necessarily in the same plane.

Now, as assumed, f{u, v) denotes the effect produced
by the shifting of the line CD to the parallel position )
EF; f(«, v) denotes that by a farther shifting, namely ¢ /
from EF to the parallel position E'F': which two shift-
ings “ put together” come to the same thing as one shifting ﬁom CD to E’F’ Now
since AB' is represented by u-#/, the effect of this last-mentioned shifting is denoted
by f(u+4/, v) : we have therefore

S, v) +fW, v)=flutd, v),
that is, the lateral effect of the translation of v along w is a distributive function as
regards u.

In precisely the same way it may be shown, that the longitudinal effect is also a
distributive function as regards ». For it is manifest that the three translations,
viz. that along , that along «/, and that along v+, amount respectively to GB, G'B/,
and HB/, as regards longitudinal effect, and we have HB'=GB+G'B'. Whence the
conclusion is evident.

It remains to show that both effects are distributive functions Fig. 14.
as regards v also; and this is immediately obvious: for the trans- v v A
lation of v along u “ together with” that of o' along w, is the same 7]
thing as the translation of v+ along w; and thus, whether f de-
note the lateral or longitudinal effect, we have

S(u, v) +f(w, v)=f(u, v+v).
Both effects therefore are distributive functions with respect to » as well as w.
MDCCCLII. z
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(22.) It is important to observe, here, that the 4 in u-+« denotes successive,
-while that in v4v' denotes simultaneous addition.

(23.) Notation adopted to represent the two effects. 1 have stated above the
reasons why ».v and »Xv may be appropriated to denote, simply, any distributive
functions of # and v. I have here shown the existence of two such functions, very
important to be “noted” symbolically, and to be distinguished from each other. I
shall therefore venture farther to employ the notation w.v exclusively for the pur-
pose of representing the lateral effect of the translation of v along «, and the notation
u X v exclusively to represent the longitudinal effect.

(24.) As regards the order of the factors, I shall always suppose that the second
Sactor is the translated magnitude, and the first factor the line along which it is
translated.

(25.) In using these notations I am not warranted to attribute to them, without
proof, any property of an ordinary product, except its distributiveness: for example,
I must not put ».v=wv.u, without investigating whether this equation holds as regards
the effects represented by ».v and v.u. Nor again, if m and » be any numbers, can
I, without proof, put (mu).(nv)=mn(u.v). These points I shall now consider.

(26.) May Numerical Coefficients, occurring in u.v or uxv, be brought out and
incorporated by actual multiplication —Supposing m and » to denote pure numbers,
may we put (mu).(nv)=mn(u.v), and (mu)X (nv)=mn(uxv)? Or, to express the
question in words, is the effect produced by the translation of nv along mu equivalent
to mn times the effect of the translation of v along w? It is very important to bear
in mind, as regards this question, that nv means v4v+4v- &e. “ put together” by
stmultaneous addition ; while mu means u-+tu-u+ &e. “ put together” by successive
addition (see art. 22). Hence it will not be difficult to show that u.(nv)=n(u.v)
in virtue of the distributive property; but, that some additional consideration is
requisite to determine whether (mu).v=m(u.v).

(27.) First, as regards w.(nv). The nv* here have the same origin Fig. 15.

A, and they are translated simultaneously from A to B. This trans-
lation is manifestly the same as if each v were translated separately 'MfU
from A to B: and thus it follows that the translation of nv along v A~—4 B
is the same thing as » translations of v along »; or, in symbols,

u.(nv) =n(uw.v), and uX (nv)=n(u X v).
Indeed this is nothing more than a re-assertion of the distributive nature of the
translation of v along u, as regards v.

(28.) Secondly. In the expression (mu).v the u* have not the same origin, but are
“ put together” successively, as is represented in fig. 16, Fig 16.
making up the line AB (supposing, for a moment, that  »
m=>5). It is clear, then, that (5u«).v means a transla- 4. — £ & & AT
tion of v from A to B, while 5 («.v) means five transla-
tions of v from A to A'. Hence, before we can decide whether (mu) . v=m(u.v), we
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must determine whether the translations of v from A to A’, from A’ to A", from A" to
A", &c. are equivalent to each other in effect; for, if they are, it makes no difference
in effect whether we repeat the translation of » from A to A' five times, or simply
translate v from A to A', from A’ to A", from A" to A", and so on to B. The question
then comes to this—Are we to regard translations as equivalent to each other, in
effect, when the magnitudes translated and the lines along which they are translated
are respectively equivalent to each other, whether the translations take place in the
same part of space or not?

(29.) Fundamental Assumption.—1 am thus led to make the following Assumption
the basis of my proposed method; viz.—That parallel and equal
translations of parallel and equal magnitudes are equivalent to each
other both as regards the lateral and longitudinal effects; or, sym- ”Z/]‘
bolically, if «' and +' be respectively parallel and equal to » and », * w
then w

v . v'=u.v, and ¥' X v'=uXv.

Fig. 17.

This assumption holds true, manifestly, in each of the three suggesting cases from
which I have taken my start (see art. 2), and I am therefore justified in adopting it,
with the understanding, of course, that it be shown to hold true, or tacitly admitted,
in all cases to which the notation may be applied; or else, should the occasion
require it, be abandoned, and, with it, the property expressed by the equation (mu).v
=m(u.v).

(30.) Returning to fig. 16, we have, by the Assumption just made,

AA v=A'A" v=A"A" v= &ec. &c.;
som(u.v)=m(AA ) =AA v+ A'A" v+ A"A" v+ &e.
=(AA'+A'A"+A"A"+ &e.) v
= (mu).v.
And generally, by what has been proved, we have
(mu) . (nv) =n{(mu) .v} =mn(u.v) ;
and, similarly, (mu) X (nv)=mn(uXv).

It appears thus that numerical coefficients, occurring in the symbolic forms «.v and
uX v, may always be brought out and incorporated by actual multiplication *.

(81.) May the order of the factors u and v in the symbolic forms u.v and uxv be
changed, or not >—First, as regards u.v, may we put w.v=v.ut Here I may repeat
that the second factor always denotes the translated magnitude, or rather, the repre-
sentative arrow. Thus the question is—as regards lateral effect, is the translation
of the magnitude represented by the arrow v along the line u equivalent to the trans-
lation of that represented by the arrow w along the line v. This is easily decided as
follows.

(82.) It is clear that the lateral effect of the translation of a magnitude in its own

* It may be shown, in the usual way, that this is true also when m and » are fractional or negative numbers.

z 2
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direction is zero: it follows therefore that u.u=0, v.v=0; also that
(utv). (utv)=0,
Souwutuvotviutv.o=0,
couvtv.u=0,
or v.u=—u.v.

It appears then that u.v and v.u are equivalent as regards magnitude but opposite
in sign.

(33.) Secondly, as regards wXv, may we put vXwu==uXv? This question is
determined by observing that the longitudinal effect of the translation of a magnitude
at right angles to its direction is zero, as follows.

Let u=ma, v=m's, & and ¢' being the directions (directed units), and m and ' the
magnitudes of  and v. Then, by article 30,

uXv=mn(eX o) and vX u=mn (¢ .a). Fig. 18.
Now it is clear, from figure 18, that ¢4« and a—e' are lines at right
angles to each other; therefore
(e4o) X (a—a) =0=(z—0) X (x+¢) ;
therefore, omitting common terms, we find
—aXe o Xo=aXd—do Xa,
SoaXe=d Xa.

And thus it follows that
uXv=vXu.

It appears then that w X v and v X u are equivalent as regards both magnitude and sign.
(84.) Thus u.v is commutative with change of sign, while u X v is simply commuta-

tive. The reason of the change of sign in the former may be Fig. 19.
easily interpreted as follows. An arrow has two distinct sides, kft.gr@;{t
which, for the sake of fixing ideas, I may call right and lef?, r@ﬁtkat
and which may be defined by supposing that I stand or the _right sideof
plane of the paper looking in the direction of the arrow. Now, v
referring to fig. 19, it is clear that the translation of v along N
w is laterally a motion to the right side, while that of  along iy
v is fo the left, the translated magnitude in both cases being \%d&'
that with reference to which I speak of right and left. Thus /&
the meaning of the equation v.u= —w.v is obvious.
ITI. MEASUREMENT AND SUMMATION OF TRANSLATIONS.
(35.) Units of Translation.—I shall take the translation of a Fig. 20.

unit along a perpendicular unit to be a unit of lateral translation ; B
and the translation of a unit along itself to be a unit of longitudinal @u
translation. Thus (see art. 16) «.3, 8.y, «'.3, &c. are units of ﬁx
lateral translation; and e X e, X8, &' X<, &c. are units of longi-
tudinal translation.
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(36.) All Units of Longitudinal Translation are equivalent to each other. For let
« and o' denote any two directed units whatever; then, as above,
(e+¢) X (a—e)=0;
wherefore, since « X o/ =o' X , we have
aXa=doXd.

In illustration of this result the third suggesting instance, that of Mechanical Work,
may be quoted ; inasmuch as work is the effect of longitudinal translation, and all
units of work are equivalent to each other, no matter in what directions the working
forces act.

(37.) Al Units of Lateral Translation, in the same or in parallel planes, are equiva-
lent to each other.—Let a, 3, o/, 3 lie in the same plane, and let ¢ denote the angle
which ¢/ makes with «, and therefore that also which 3’ makes with 3 (art. 16):

then (art. 17)
«'=wo cos 043 sin 4

B'=« cos <£)+g> +Bsin (o+’§’) H

., observing that ¢.«=0.8=0, and «.f=—0.a,
we have
o .f'=a.a(cos’I+sin® ) =oa.c.
Hence all units of lateral translation in the same, or in parallel planes, are equivalent
to each other.

In illustration of this result, the second suggesting instance, that of a Couple, may
be quoted ; for all unit-couples in the same or in parallel planes are equivalent to
each other.

- (38.) Directrix—Hence, in expressing a unit of lateral translation, it is only neces-
sary to specify a plane parallel to that in which the translation takes place; or, what
is better and immediately suggested by the theory of couples, it is only necessary to
specify a line at right angles to the plane of translation. Such a line I shall, however,
designate by the word “ directrixz,” not azis; because there is no idea of rotation in-
volved in the present theory, translation being a kind of motion essentially different
from rotation. I shall assume ¢ to be the directrix of «.3 and of all units of lateral
translation in planes at right angles to ¢ ; and, generally, I shall define the directrix
of any unit of lateral translation to be a directed unit at right angles to the plane of
that translation.

(39.) But, since «.f=—f.¢, it is necessary to distinguish posi- Fig. 21.
tive from negative translations; and this may be done by giving lm ”l "
an appropriate sign to the directrix. I shall therefore assume M“l” ‘ 'MWH
generally, that my is the directrix of m «.3, m being any number i{_llﬂ_d” l_ ”l l“’lr”“JL';
positive or negative. Thus —y will be the directrix of —e.B, that s
is, of B.z. And, hence, I may adopt. the following criterion of




174 REV. M. O'BRIEN ON SYMBOLIC FORMS DERIVED FROM THE CONCEPTION

sign. I shall suppose myself standing at right angles to the plane of translation in
such a position that the translated magnitude points to the right, while I face the
direction in which the translation takes place; and then I shall take an arrow
pointing from foot to head as the directrix. According to this criterion the letters
written underneath the following translations are their respective directrices; viz.
a.( B.y y.0 B.o v.3 o.y
¥ @ B -y —« =B

(40.) Measurement of a Translation—Let w.v, or wXwv, be the translation, « the
direction of u, (¢83) the plane of ».v, 4 the angle which » makes with «, m and n the
magnitudes of » and v; then

u=me, v=n(zcositBsind);
. uv=mnsind(«.3), (since x.w=0).
Hence there are mn sin 4 units in the translation w.v : mn sin 4, therefore, is the nume-
rical magnitude of ».v, and its directrix is (mn sin §)y.

Again, u X v=mn cos §(z X &), (sincex X 3=0). Hence the numerical magnitude of
u X v is mn cos d.

(41.) It is worth remarking that mn sin ¢, the numerical magnitude of %.v, is the
area of the parallelogram completed on » and v as sides.

(42.) The Directrix of the Sum of two translations is the Sum of their Directrices.—
Let the two translations be me.3 and m''. 3, and their directrices, of course, my and
m'y'; let EB be the intersection of the two planes of these trans- Fig. 22.
lations, and take AB=m and BC=w/, AB and BC being
drawn at right ¢ gles to BE, AB in the plane of .3, and BC
in the plane of & 3. D

Now, since all v its of lateral translation in the same plane
are equivalent to ach other, I may turn « and (3, &' and g
about in their respe tive planes, until both « and «' coincide ,k
with BE; in whick case 8 and (8’ will coincide with AB
and BC respectively. then AB will become m3, and BC m/3'. Let the third side of
the triangle ABC be » "g" as shown in the figure. Then the sum of the two transla-
tions is

m_/} @’I

ma.+m'a .3,
a.(mB+m'f3);

and this, since mB+m/3' =m"3", becomes
m'e.p.
Let m"y" be the directrix of this: then it is clear that y, ¢’ and 3", being each at right
angles to «, lie in the plane of the triangle ABC, and consequently my, m'y’ and
n_n

m"y" are the three sides of the triangle ABC, supposing it to be turned round in its
plane through 90°. It follows therefore that

m'y"=mym'y/,

which, since «'=e«, becomes
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that is, the directrix of the sum of the two translations is the sum of their direc-
trices.

(43.) Generally, it is manifest from this result, that the Directrixz of the Sum of
any number of Translations is the Sum of their Directrices.

It is not necessary to point out the importance of this rule as regards the summa-
tion of translations, nor its identity with the well-known rule in the Theory of
Couples.

(44.) For the sake of convenience it will be worth while to employ some abbre-
viated mode of specifying the directrix of any translation ; for this purpose I shall
adopt the following notation, which, it will be found, will answer all purposes, and
at the same time very distinctly mark that property in which the peculiar relation be-
tween a translation and its directrix consists. The property I allude to is the theorem
just proved in article 42.

I shall employ the letter D to stand as an abbreviation for the words “directriz of,”
and thus D(u.v) will mean the directriz of the translation u.v. It will be borne in
mind, then, that D(«.v) denotes a line at right angles to the plane of ».v, and con-
taining as many units of length as there are units of area in the parallelogram con-
structed on » and v. :

(45.) Distributiveness of the Operation thus represented.—It is most important to
notice the distributive nature of the symbol D. By art. 42, we have immediately

D(w.v)+DW .V =D(u.v+u.v');
whence, D denotes a distributive function.

(46.) Consequences hence resulting.—From the equation in art. 45 it follows, that,
if m denote any numerical coefficient, positive or negative,

D(mu.v)=mD(u.v).
Again, since
D(v.v') -~ D(u.v)=D( v —u.v),
we have, passing to limits, ,
d(D(u.v))=D(d(u.v));
whence also,
f(D(u.v)):Df(u.v).

In short, in all operations in which differentiation and integration are concerned,
D is to be regarded as if it were an ordinary constant coefficient.

Again, if we have an equation of the form

wotw S+ W+ &e=0, . . . . . . . . L L (L)
there result from it

D(u.v)4+DW.v)+D@".v")+&e.=0. . . . . . . (2)
And, conversely, (2.) gives (1.).

(47.) Inverse of D.—If w be the directrix of u.v, and therefore w=D(u.v); I may
of course, according to the true force of the index (—1), assert, that u.v=D"'w.
Thus D~'w comes to be an abbreviation for the words—* the translation whose direc-
triz is w.”’
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(48.) It may be well to observe that the following relations result from what has
been said, viz.

D(«.g)=y D@.y)=« D(y.z)=p
DB.c)=—y D(y.B)=—« D(a.y)=—f
whence
a.Bf=D""y B.y=D"e ya=D""3
&e. &ec. &ec.

(49.) Symbol for Units of Longitudinal Translation.—It has been shown that these
units are all equal to each other; a wnit of longitudinal translation is therefore an
absolute constant. No distinctive symbol is necessary, therefore, to represent these
units, and it will be allowable to employ the common unit (1) for the purpose; just
in the same way that we denote all units, whether they be linear, superficial, cubical,
mechanical, by this common symbol. I shall therefore always represent a unit of
longitudinal translation by 1; and thus put

eXoa=1, Bxp=1, yXy=1;
and generally, if m and » denote the magnitudes of » and v, we have (art. 41)
u X v="mn cos J,
¢ being the angle made by » and v.
(50.) Hence if « and o' be any two * directions,” we have

« X a'=cosine of angle made by « and .

To this may be added
magnitade of «.«'=sine of same angle.

(61.) Projections represented by the lateral and longitudinal translation-products.—
It is clear from the principles just established, that, if «, 3, ¥ denote the directions of
three coordinate axes, and v any line, the projections of v on the three axes are, nume-

rically, o X v, BXwv, ¥ Xv.
Again, since X u is the square of the magnitude of the line u, the projection of v
on u is, numerically, uxw
Vuxu

which, putting for « and v the values xe+yB+-2y, 2'a4y'B-42'y, becomes by longitu-
dinal multiplication,
' +yy + 22
VS
I may use the terms “ lateral and longitudinal multiplication” to designate the ope-
rations denoted by ».v and uXwv; for the word “ multiplication” has quite lost its
original and proper signification even in ordinary algebra.
(562.) If AB represent », AC the projection of v on u, the mag-
nitude and direction of # being m and «; then
CB=AB—AC=v—(zXv)c.
I think CB might be advantageously called the Complement of the
Projection of v on u, for CB added to AC makes up or completes v ; - _
and thus, employing the usual abbreviation, we may call CB the W= mo,
coprojection of v on w.

Fig. 23.
B
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Hence the operation («(«Xx ) performed on v gives the projection of v on u, and the
operation (1— (X «) the coprojection; where « denotes the « direction” of u, i. e.
.U
m OF -
(53.) Since ¢.v=0.(AC+CB)=«.CB, it is clear that the symbol «.v denotes, in
maguitude, the coprojection of v on «; and it also represents the plane of projection.
But Du.v is a better symbol to use ; for its magnitude is the same as that of «.v, and,
in direction, it denotes a line at right angles to the plane of projection.
(54.) Repetition of the Operation (Dwx.). This operation is often to be performed
twice in investigations, and, on this account, the following relation is important, viz.
De)d=(eXe)o—a'. . . . . . . . . . . . . . (1)
Of course (De.)’' means De. (Dex.o').
To prove this, let 8 be chosen so as to lie in the plane (««'), and let ¢ denote the
angle which « and o' make with each other; then (by art. 17)
¢ =ecos 4fBsind
De.o/=ysind (art. 48)
De.(De.o')y=—B cos ¢
= acosfd—¢
or (Da.)o=(zX)a—e' (art. 50).
If u=mo v=nv/, we have
(Du.)’v=m’n(De.)%'
= (mo X ne!ymo— (ma X me)ne',
or Duv=(uXxv)u—(uxXwpr; . . . . . . . . . (2)
or, if m=1, (Dea.)’v=(eXv)o—v. . . e .. (8)
(65.) Relation of the Operation (Dw.) to the operatzon \/ --l or ( )3. The defini-

1
tion of the index 3 in relation to operations is this. If Q and Q, be symbols of

operation, such that Q performed twice on a quantity gives the same result as Q,
once performed, then Q is denoted by Q32 Now, if we suppose that » is at right
angles to «, and therefore & X v=0, the equation (3.) gives (what indeed is otherwise
more easily shown from art. 48)

(De.)v= —v,

Do.=(—)%

In this case o is any unit line whatever at right angles to v, and therefore, in Solid

wherefore

Geometry, (—)¥ or o/ —1 has not two (as in Plane Geometry) but an infinite
number of values.
(56). It is clear from the relation
(Do Yv=—
that (De.) has all the properties of the sign \/—1, provided it be performed on lines
at right angles toee. But (De.) is a far better sign for actual use in Solid Geometry than
MDCCCLII. 24
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A/ —1, because the latter is indefinite, not distinguishing what particular root of —
is meant; but the former is perfectly definite, inasmuch as it indicates one particular
root of —, namely, that root which denotes rotation through 90° about « as axis*.

* Sir W. Hamrrron, in his System of Symbolic Geometry and Quaternions, which may be truly described
as one of the most profound and beautiful theories in the whole range of abstract science, assumes the letters
i, 7, k to denote particular values of 4/—1. In a certain limited sense, the symbols (Da.), (DB.), (Dy.)
are equivalent to these; for 7, j, & denote rotation through 90° about the axes @, 8, ; and thus we have

y=iB, a=jy, PL=ka;
y=Da.B, a=Df.y, B=Dy.a,
it is clear that ¢, /, £, and (Da.), (DB.), (Dy.), so far, denote the same operations.
But the operations are different in general; for i2=—1 always, but (De.)?, as has been shown above, is no?

and, therefore, since

equivalent to —1, except when performed on lines at right angles to a.

There is one difficulty, I confess, I cannot get over in Sir W. Hamruron’s Theory, no doubt from some
misconception on my part, or from taking too narrow a view of the meaning of the sign ¥ —1. The difficulty
I allude to consists in this. Sir W. Hamrrrox assumes 4, j, &k not only to be particular values of +/—1, but
also absolute directions (1. e. units of direction) : in short he uses s, j, £ in the same sense as a, 3, y above, and in
the same sense also as (Da.), (DB.), (Dy.). Now my difficulty arises from my not being able to see how
particular values of 4" —1 can denote anything (geometrically) but ckange of direction, or to perceive, that
they can be used with propriety as symbols of those rectangular units of direction.

However this may be, it is important to explain the fact, that, in the results to which I have been led by
the conception of translation, there are no general relations corresponding to

p=—1, =-—1, k=-1.

In my method, e, B,  are simple units of direction and nothing more; and instead of the relations just put
~down, I have been led, by the conception of iranslation, to the following, viz.—
a.a=0, f.f=0, y.y=0
axa=1, GxB=1, yxy=1;
though, as regards the last three relations, all that I have a right to assert as a matter of necessity is, that
Also, I find axa=pxp=yxy
Da.)2=—1, (DB.)2=-1, [Dy.)=-1,

but only when performed on lines at right angles to «, 8, v respectively.

I may observe that if v denote the product of u and v according to Sir W. Hamirron’s Theory, it may be

thus expressed in terms of my ¢ranslation-products ; viz.—
wv=—u Xv+4Du.v.

Hence, since Dy.v=—Dv.u, and u Xv=v X4,
vu=—uxXv—Du,v.

‘Wherefore UXv= ~%(uv +vu)
Du .'v=%(uv-—vu).

I may also observe, that, according to my method, I might put
w=u Xv-+u.9,
supposing that uv denotes the complete product of the translation of « along v, including both the lateral and
longitudinal effects. But I cannot make any nearer approximation to the equation '
w=—uxv+Du.v;

nor can I see that the conception of translation furnishes any interpretation of the — before « x v,

If, in any way, I could show that —1 was the proper value for a unit of longitudinal translation, I should have

ga=aXa+a.g==1,
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(57.) The lateral translation-product is therefore well adapted to denote rotation.
Thus (always supposing that v is at right angles to ), the symbol of a line making
an angle 0 with v, and in a plane at right angles to e, is

D%y
which in fact is the same thing as
{cos 84 (De.) sin d}v,

for cos 4 and sin 4 represent

62 ¢
1‘175"‘1.2.3.4’
PR %
and 1~ T23T12345

and ¢®* is the symbolic form for expressing
(oD ¢D
RO L

whence, since (De.)’=— (De.)*=+ &c., the symbolic equivalence of the forms
¢®* and cos §-+(Dw.) sin 4

is manifest. But the quantity operated upon must necessarily be at right angles to
; for, otherwise, (Da.)* is not equivalent to —, as appears from art. 54, equation (3.).

(68.) Concluding Remarks—I have now said enough, I think, to explain the
nature of the proposed symbolization, and the general rules which regulate the
application of the two translation-products. 1 have based the whole theory simply
and exclusively on the conception of translation, taking my clue from the three
suggesting instances, the parallelogram, the couple, and work. As regards the lateral
effect of translation, the theory is nothing but a general development of our geometrical
notion of multiplication; for what is a rectangle, ABCD, considered apart from
arithmetical measure, but the effect or product of the translation of  Fig. 24.
AB along AD? and this we represent by writing AD before or after o
AB. But this method of representation is clearly incomplete when
we put for AB and AD their numerical representations; and whye? L I,
because the special superficial unit then is omitted. For, suppose AB=3, AD=4;
then, if we say that the rectangle ABCD is the product of 3 and 4, or 12, we mean,
12 superficial units. Now, by omitting the superficial unit in our representation, we
leave out all conception of the plane in which the rectangle lies. All that I have
done above is fo restore the superficial unit, and determine its proper representative
symbol. As regards the longitudinal-effect (suggested by the conception of work), it
appears that all units are absolutely equivalent, and therefore may be all confounded
in the common symbol of unity.

I now proceed to give Applications of the Symbolic forms* ».v and u X v, &c.

# | may refer here to an imperfect attempt I made in a paper read before the Cambridge Philosophical
Society (Nov. 1846) to base the symbolic form Du.v on the conception of perpendicularity in art. 19 above.
242
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PART II.
APPLICATIONS OF THE SYMBOLIC FORMS.

I. GEOMETRICAL APPLICATIONS OF THE SymBoLric Forwms.

The geometrical applications which may be made of the principles and notation
just explained are of great variety and importance; but, as I am anxious to dwell
chiefly on physical applications, I shall only touch on this part of the subject.

(59.) Surface symbolically considered.—In Symbolic Geometry the symbols of lines
represent, not merely length but also direction. A line is supposed to be the geome-
trical effect of the motion of a tracing-point, and the equivalence of lines is con-
sidered altogether and exclusively with reference to the change which Fig. 25.
they represent in the position of the tracing-point. We consider that 5 o
AB is equivalent to A'B', when the two lines are of equal length, AJ /
parallel, and traced the same way ; for then they represent equiva-
lent changes of position of their respective tracing-points. It is usual to employ the
notation AB to denote the line AB #raced from A to B, and BA to denote the same
line traced from B to A; and thus AB=A'B/, but BA=—A'B'. It is clear then that
equivalent lines must be, not only of equal length and parallel, but also must be
traced the same way. Again, the equivalence being considered only with reference
to the tracing-point’s change of position, AC4+CB is equivalent to A'B'.

Now, following this analogy, and regarding surface as the effect of the motion of
a tracing-line, just as a line is the effect of the motion of a #racing-point, we may
employ symbols to denote surfaces, not merely as regards their Fig. 26.
numerical area, but also with reference to the manner in which they /,/7»,‘3

equivalence of surfaces altogether and exclusively with reference to
the change which they represent in the position of the tracing-line,
Thus, if ABA'B, BCB'C', ACA'C' be three parallelograms, and if we =
conceive them to be generated, respectively, by the translations of A'A along A'B',
B'B along B'C', and A'A along A'C’; it is clear that
(ABA'B")4(BCB'C') is equivalent to (ACA'C'),
just in the same sense that
| (AB+4BC) is equivalent to (AC).

Again, if ABCD and A'B'C'D' be two parallelograms, AB and Fig. 27.
AD being respectively parallel and equal to A'B'and A'D/, we may 3 ¢
consider these parallelograms as equivalent to each other, in the g
same sense exactly that the lines AB and A'B' are regarded as
equivalent, Only, just as it is necessary for the equivalence of
AB and A'B/, that they should be traced the same way by their re- A
spective ¢racing-points, so it is necessary to the equivalence of ABCD and A'B'C'D/,
that they should be traced the same way by their respective ¢tracing-lines. Now here
it is to be observed that a tracing-point is devoid of two important properties which

B’

DY
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a tracing-line possesses; I mean, direction and two-sidedness (if I may so speak). An
arrow lying on* a plane, not only points in a particular direction, but has #wo distinct
sides, right and left (see art. 34). Hence when we speak of lines described the same
way by their tracing-points, and parallelograms described the same way by their
tracing-lines, the expression “ same way” includes much more in the latter than in
the former case. For example, the parallelograms generated by the translation of
AB along AD, and of DC along DA, though coincident, are described opposite ways.
Again, the parallelograms generated by the translation AB along AD, and of AD along
AB, though coincident, are described opposite ways; for the former is described by
a right-side motion, and the latter by a left-side (see art. 34).

(60.) Definition of Surface by reference to Lateral Translation.—It appears to me
that the simplest way of including the considerations just alluded to in the general
conception of surface requisite in Symbolical Geometry, is to define Surface by refer-
ence to the Lateral Effect of the Translation of one line along another. The Funda-
mental Assumption (article 29) is justified in this case, as appears from the remarks
just made, and the peculiar relation #.v= —wv.% is naturally interpreted (see art. 34).
I shall therefore define Surface in Symbolic Geometry to be the Lateral Effect of the
Translation of one line along another. By “ Effect” here I mean simple Geometrical
effect, i. e. change of position in space. Also I only speak of lateral effect; because
all notion of longitudinal effect is excluded by our ordinary conception of surface,
and we may assume that no shifting which a line undergoes in its own direction can
generate surfuce.

(61.) Longitudinal Effect considered geometrically—But though the shifting of a
line in its own direction generates no surface, it produces alteration of position; and
hence it constitutes an important conception. The only difficulty, in considering the
longitudinal effect geometrically, consists in this—How is it that all units of longi-
tudinal translation are equivalent (see arts. 36, 37), while those of lateral translation
are not, and on what principle can this difference be interpreted? The answer ap-
pears to be this: that «.3 denotes the effect of translating the unit 3 along the per-
pendicular unit «; that this operation conveys the conception of a particular plane,
and we must think of «.(3, 3.y as different operations because they are performed in
different planes. On the contrary, the translation of « along «, or X «, conveys no
conception of a particular plane ; in fact @ X « and 3 X3 way be regarded as performed
in the same plane. Thus, that which before made the difference does not exist in
this case.

Generally, u.v=u'7', when the two parallelograms gene- Fig. 28.
rated are equal in magnitude, and lie in the parallel planes; v o ‘
but « X u and ' X «' may be always considered as lying in the Z/’z M'
same plane; and consequently difference of magnitude only
remains to constitute a difference between u X v and u' X v'.

* Not in but o7 a plane, that is, on one particular side of the plane; e. g. on the upper side of this sheet of
paper,
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Again, as regards sign, there are jfour varieties of the form w.v, namely u.v,
(—u).(—v),both +4*,and (—u).v, u.(—v), both —*. But there are only fwo varieties
of the form » X v when v becomes identical with % ; inasmuch as v must be the same
as u in sign as well as in magnitude, and consequently the notation does not admit of
the variations (—u) X and #X (—u). Now the other remaining variations are w X %
and (—u) X (—u), and these have both the same sign..

Hence (supposing that » and v are units), since units of lateral translation may
differ from each other in two particulars only, namely, sign and plane of translation,
and since units of longitudinal translation are incapable of differing in these parti-
culars, we may see the interpretation of the result in art. 37, and its perfect consist-
ency with that in art. 36.

(70.) Symbol of a line drawn from a given Point.—If we assume that simple letters,
such as u, v, w always denote lines of particular lengths and drawn in particular
directions, but all starting from the Origin of Coordinates O ; then Fig. 29.
the proper symbol for denoting a line v drawn from the point P, OP
being u, will be

v4u.vtFuXxv; 3
for v denotes the line v drawn from O, and ».v-4u X v the lateral and
longitudinal effects of translating it from O to P, which effects, as
above stated, have reference only to the change of position of P. I shall reserve the
consideration of this symbolization for a future occasion, as a striking instance of the
same thing will be given in the next section.

II. STAaTICAL APPLICATION OF THE SYMBOLIC FORMS.

(71.) Equwalence of Parallel and Equal Translations.—As a necessary preliminary
the Fundamental Assumption in art. 29 must be justified. To do this it is only neces-
sary to bear in mind that all statical problems are reducible to the case of balancing
forces acting on the same rigid body. Now let AB and CD be

Fig. 30.
any two parallel and equal lines in the same rigid body ; join A
and D, C and B; the intersection E bisecting the two joining
lines; and let P and Q be two equal parallel forces acting at 4 B
A and D. ) e
Then P and Q are equivalent to P4-Q at E, and P4+Q at E . V
n

" is equivalent to P at B and Q at C. We may therefore translate
P from A to B, provided we, at the same time, translate Q from D to C. Whence it
follows that the translation of Q from C to D must be equivalent to the translation
of P from A to B. Thus the fundamental assumption is justified.

(72.) Representation of Forces by Lines—~It will be remembered that the general
symbolic representation of forces by lines assumes the truth of the Parallelogram
of Forces. As a matter of curiosity it may be asked, is it possible to apply this Sym-
bolization of Translation to prove the Parallelogram of forces, without assuming that
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Jorces are represented by lines? It may be done very simply, and I give the proof
here as an example of the application of the metheod.

It may be seen, on referring to art. 21 and the following articles, that there is no
assumption whatever of the possibility of representing forces by lines generally. The
arrow representing the translated magnitude is used merely as a conventional symbol,
just as a letter in algebra. I therefore may apply the notation u.v to the present
question, provided I consider v to be the symbol of a force, and not of a line repre-
senting that force. T must not however employ the reasoning in art. 32, for that-
distinctly assumes the point in question. The following then is the proof I shall give.

(73.) Parallelogram of Forces—Let A, B, C denote any Fig. 31.
three units of force, and a, b, ¢ units of length (directed z¢ b
units) parallel respectively to A, B, C; let X, Y, Z, x, y, = : @c
be pure numbers; suppose that the forces XA, YB, ZC ¥ =
balance each other, and that xe, yb, zc are the three sides .

of a triangle formed by lines drawn parallel to the forces. Then by successive addi-
tion we have

za+yb+zc=0, . . . ., . . . . . . . (L)
and by simultaneous addition

XA+YB+ZC=0. . . . . . . . . . . (2)
Hence, from (1.) and (2.), we have

(=2¢).(—ZC)=(za+yb) .(XA4+YB);

or, observing that (since no lateral effect is produced by translating a magnitude in
its own direction) ¢.C, a.A, b.B are each zero, we have

0=zY(a.B)+yX(®B.A). . . . . . . . . (8)
Now, without altering the directions of the units A, B, a, b, let us put X=Y; in
which case it is self-evident, that ZC must become equally inclined to XA and YB,
and therefore xc must make equal angles with e and yb, which gives =y. Thus

(3.) becomes
a.B+b.A=0, or b.A=—a.B.

Wherefore, restoring the inequality of X and Y, we find from (3.),
(Y —yX)a.B=0, or 2Y—yX=0.
And similarly, we may show that

YZ—2Y=0
X —2Z=0;
whence X:Y:Z::z:y:2.

And this is, virtually, the Parallelogram of Forces.

Thus it appears that the notation «.v is capable of affording a simple proof of the
great fundamental theorem of Statics ; this application of the method is given, however,
as I stated above, merely to show by example what can be done in this way. I may
observe that the whole of the proof here given depends simply upon two things, the
distributiveness of ».v, and the fact that numerical coefficients may be brought out



184 REV. M. O’BRIEN ON SYMBOLIC FORMS DERIVED FROM THE CONCEPTION

and incorporated by actual multiplication. I now proceed to give, generally, the
mode of applying the notation to determine the conditions of equilibrium of a rigid
body, or a system of particles.

(74.) Remarkable symbolization of a Force acting at a Specified Point of a Rigid
Body. One of the most remarkable symbolizations which my proposed method leads
to appears to me to be the following.

Let U denote a force (in magnitude and direction) acting at any assumed origin A,
then U+4u.U
will completely denote the same force supposed to act at the point u, that is, at the
point (P) whose distance from the origin is, symbolically, u. For if we apply the
force at the origin A and then translate it to P, it will be the Fig. 32.
same thing as if we applied the force directly at P. Thus

effect of force at P=effect at A (or U)
+effect of translation from A to P.
But, the lateral effect only of the translation need be considered,
for the longitudinal effect is zero, inasmuch as we may suppose a
force to act at any point of its line of direction on a rigid body.
Hence the effect of the force acting at P is symbolically represented by the force
U+ lateral effect of translation, or U4-u.U.

(75.) Symbol of a Couple—Let the couple consist of two forces, U  Fig. 35.
at the point », and —U at the point ': then these two forces are com- ’
pletely represented, as regards their effect on the rigid body, by the
expression A

(U4u.U)+(=U+u'.(— 1))
or (u—u'). U,
which is the general symbol for a couple; as indeed is clear beforehand from the
fact, that the couple is that which translates the force U from the point (/) to the
point (u), i. e. along the line (u—u).
It wiil be generally simpler to employ the symbol in the form
.U,
w here denoting, symbolically, the line drawn from the point of application of the
force (—U) to that of the force (U). The directriz of this, i.e. the axis of the couple,
is D(u.U).
(76.) To combine a given Set of Couples—Let us put (see art. 15)
u=uxo-+ypB-+4zy
U=Xo+YB+Zy.
Then we find, by lateral multiplication,
u. U=(2Y—yX)a.f4HZ—zY)B.y+ (X —1Z)y.c.
Hence, if we suppose the given couples to be ».U, «'.U', «".U", &c., and if we
put, for brevity,
2(@Y—yX)=N, 3(yZ—=Y)=L, 3(:X —aZ)=M,
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the combined effect of the couples will be
2(u.U)=LB.y+My.x+Ne.3
=D"'(La+4+MB+Ny) (art. 48).
Heuce, if we assume G to denote the magnitude and ¢/ the direction of Le-+Mf3-4Ny,
which gives (art. 17)

L M N
G*=L*4M4+N* . .. ... (1), =getghtgy - - - - - (2.);

we find
2uU=D"'(Gy)
=Gd' .3 (arts. 48 and 16).

Here o'.3' denotes a unit-couple in a plane at right angles to o/; aud thus the
resultant is a couple G in this plane; G and ¢ being given by (1.) and (2.).

(77.) To combine a given Set of Forces acting at given Points of a Rigid Body.—
Let the forces be U, U', U,” &ec., and their points of application u, «, u", &c.; then,
by art. 74, their combined effect will be

2(U4u.U).
X=X, 3Y=Y, 23Z=Z,

and employ the notation of the preceding article, the combined effect becomes
Xe+YB4+Zy+Go .3,

Hence, if we put

or Re+Ge' .03,

where R=X4Y4Z% . . . . . . . . . .. (3
X Y V7

and 7,=R~l’a—|—ﬁl‘@+ﬁjy. N €9

Thus it appears that the set of given forces are combined into a single force R,
(given by (3.) and (4.)), and a single couple Go'.3' (given by (1.) and (2.) previous
article). \

From the result just obtained the various well-known conditions and equations,
relating to the effect of a set of forces on a rigid body, immediately follow. To ex-
emplify the method I shall apply the formula R+ Ge'.8' to the following question.

(78.) To combine the set of forces into Two Forces—Let us so Fig. 24.
choose o' and @' (which are arbitrary, except so far as they are per-
pendicular to ¢'), that 8" shall be in the same plane as ¢, and /;
and let @ be the angle which y, makes with /. Then, by article 17,

y,=v' cos §+0'sin ¢;
Ry 4 Ge.f'=(R, cos 0)y'+ (R, sin §)3'+Ge' .3
. G .

=(R, cos §)y'+ (R, sin )3+ (R, Sin—ea’> - (R, sin 9)3.

Now by article 74 this is the expression for the effect of two forces, viz.—
R, cos ¢ in the direction 7/,
and R, sin 4 in the direction (3,

MDCCCLII, 2B
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the former acting at the origin, and the latter at a point whose distance from the
origin is
G . R
Rsind drawn in the direction o'

R, G,y and y, are given by the equations (1), (2), (3), (4) above; « is determined
because it is at right angles to the plane (y'y,), and 3, because it is in the same
plane, and at right angles to ¢/. As regards 4, we have, taking the longitudinal pro-

duct of (2.) and (4.),

LX,+MY,+NZ <
! LR,l ‘=o' X y,= cos é.

(79.) Centre of Parallel Forces.—Let the magnitudes of the parallel forces be
R, R, R", &c., y, their common direction, and , #/, #", &c. their points of application.
Then their combined effect is

3(Ry)+3(u. Ry) = (3R)y,+ 2 (3R)y,

Now, by art. 74, this is the symbol for a force 3R, acting in the direction ¥, and
at a point whose distance from the origin is

SRu

SR’

SRz . SR SRz
or SR+t SRP+IRY:

which expresses the common formulza for the centre of parallel forces.

III. ApprLicaTioN OF THE SymBoLic Forms To Dynamics.

(80.) Effective Force, Vis-Viva, Work.—If u be the distance of a moving particle
m from the origin at any time ¢, it is clear that du represents, in magnitude and
direction, the space.described in the time d¢; and thus the complete symbol of the

velocity becomes
du

Bi'l
Also d(—tg) represents, in magnitude and direction, the alteration of velocity in the

time df; and thus the complete symbol of the effective force is

%
miE:

Again, if U denote any force acting on m, it is easy to see that the symbol of the
work accumulated, while m is moving from the point « to the point «/, is

S “Ux du.

Lastly, if for U here we put the effective force, the effective work will be
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. du! a’u’ du du
or* < )

X
Here %x%—’; denotes the square of the velomty (art. 49), and thus the expression

denotes the ordinary vis-viva.

(81.) Description of Areas—It is clear that %u.du is the area described in the time
dt by w ; for it is the half parallelogram formed on » and dw. But it is to be noticed

that Su.du represents this area, not only in magnitude, but also in position.

If we put -;-u.du_—?Adt, we find
dA 1/ dPu  du du du du
& =2\ % et dt'dt>’ and - 7;=0 (art. 32);

dA 1 &2 ;
whence W:—ugg(l)

A, here, is a symbol which represents two important things :—1st, in magnitude, it
is the ordinary rate of description of area ( dt) 2ndly, its plane is the plane con-

taining the radius vector and the direction of motion, <. e. the plane of the orbit of m.
DA is the symbol of a line perpendicular to the plane of the orbit, and equal in
magnitude to the rate of description of area.
If we put u=xx-y{B3-+ =2y, and perform the operation indicated in equation (1.), we

' 2 2 2
‘find, 2d(]3;&)_ LZZZ yj%)y—l— y%—zgg)u—}- (z%g—m%)ﬁ

(82.) Expression for Effective Force with reference to radius vector, angular velocity,
and plane of orbit.—Let r denote the magnitude and « the “direction™ of u; let 8
denote a direction in the plane of the orbit of m (and, of course, at right angles to
@) ; then y will be a direction always perpendicular to the plane of the orbit: lastly,
let » denote the angular velocity of «, and &' the angular velocity of the plane of the

orbit about u, » and &' being numerical quantities. On referring to art. 19, the

following relations are manifest,

do dp
u=re = _r=—autay;

for @ and 48 ; denote, in magnitude and direction, the velo-

cities of the extremities of the directed units « and 3, and
the figure will show what their values are in terms of &
and &'

du du\_d°u du  du  d®u

¥l “x )=t a2
(dtxdt) FrRaY TREr el
d2u

_2de (art. 33).

282
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Hence we immediately find the required expression for the effective force %ji‘ by

simple differentiation, as follows,

du dr % dr
T= gt = getred
d%u dr da

d(re) ds
Bz dﬂ“"' Giai T a Brragy

or effective force = (tfm—-m )aa—l— (dt“"l' p )[3+mw'y

Hence it appears that the effective force is equivalent to the well-known expressions
along and perpendicular to the radius vector, together with a third part, res' per-
pendicular to the plane of the orbit.

(83.) The use of the forms u.v and uxv exemplified in the case of motion about a
centre of force varying as r~*.—This case appears to me to afford so good an illustra-
tion of the use of these forms, that I shall give it here briefly. Assuming a, 8, v, @, 7
as in the preceding article, it is clear that the symbol of the central force is

-—%oa, and therefore we have

d*u t
’d_tcj:-r—?w,(l)
d*u .
whence u.75=0, since u=rua, and «.e=0,
: dA
therefore (by art. 81), =0 . . oo (2)

This indicates that there is no variation of A, and consequently (see art. 81) that
the plane of the orbit, and the rate of description of area is constant.

dle),

du
If we put for A its value (art. 81) 5 Lo —7 and for u and 7 ~ their values 7« and
observing that ZZ?Z“"G’ we find
1 dr 1
A=§T'0&‘ (H—)foc-}-mﬁ) =§r2mc.[3,
1 .
or, by (2.), A=3he.B  (h=r's, as usual).
Now it is singular that (1.) admits of immediate integration, instead of requiring the

well-known transformations : for, in it, put for « its value, —% ‘—jg (see art. 82), and

we have
Pu_p dB_p df
A~ dt—h dt’
wherefore, integrating, we find
du

7 =3B+ constant.
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Cdu
Here put for ;,7% its value, and there results

% u+mﬁ=',—:'[3+ constant (cf3' suppose*).

Multiply this longitudinally by B3, and, since 8Xx=0, BxXpB=1, and BxB'=uX o
= cos 4, we find

rw:%—l—c cos d;

. o . .
or, since ro=/, this gives
1 p . ¢
F='h2+Z cos 4,
the well-known equation, ¢ being the angle which « (the direction of the radius
vector) makes with &' (an arbitrary constant direction).

The manner in which the symbolic forms have effected this integration appears to
me to be worthy of notice. ,
(84.) General Expression for the Momentum of a Rigid Body moving in any

. . . . du\ .
manner.—The Momentum of a particle (m), moving with a velocity (71;), is
du
i

And this symbol represents the Momentum in direction as well as magnitude. Now
momentum is really a force, estimated, however, somewhat differently from ordinary
pressure, on the principle that the true dynamical effect of a force is proportional to
absolute intensity and the time of its action conjointly-{. Hence, regarding the
momentum of m as a force, its complete symbol will be (by art. 74),

mdu mdu
T (72‘ :
Thus the symbol of the tofal momentum of the rigid body will be

sffaadl L

(85.) If % denote the distance of the centre of gravity from the origin, and u' the
distance of the point (x) from the centre of gravity, we have u=u-u', and thus,
since Smu'=0, (1.) becomes (putting M for m)

M%+E<M%)+2m(u'%) R |

* Of course the constant is the symbol for some constant line, as regards direction as well as magnitude,
and therefore I put it in the form ¢f3/, ¢ being a number and A’ a “ direction.”

t If the pressure P produces a velocity v in the time ¢, it produces the velocity 1-;- per second, and therefore

P=m§; or my==P¢. Pt then is the momentum, and this is proportional to P and ¢ conjointly.
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Now here, by (1.), M %—f+&. ( M%) is the expression for the momentum of M con-

. . ' du'y .
centrated into the centre of gravity, and 2m(u’.d—1;) is the momentum of the body as

regards its motion relatively to the centre of gravity (as is evident from (1.), for, if
. . du
the origin have no momentum, Zm —=0).

In Section V. I shall show, that
d !
Em<”"d_1; =D"'(Aw,e+Ba,S+Cayy),

that is, @ couple whose axis is Aw,e+Bw,S+Cuyy. Here A, B, C are the moments
of inertia about the three principal axes, of which «, 8, y are supposed to be the
directions ; and a,, @,, @, are the well-known component angular velocities.

. (86.) General Expression for the Energy of a Rigid Body moving in any manner.—
I venture to suggest the word “ energy” as a proper designation for the ¢otal effective
Jorce by which the motion of a rigid body is produced, inasmuch as éwépyera means
force actually exerted and effective. The symbol, then, of the energy of a rigid body
will be

d*u d*
Em(w +u.W).
. du du
Now, observing that — .—==0, we have

d%u du
u.ﬁzd<u.-‘ﬁ).
Hence the expression for the energy is
df du du
Comparing this with the expression for the momentum in art. 84, we have

d (momentum)
energy =——p—— . .« . . . . . . . . (1)

(87.) This, though a very simple result, is really one of importance; thus if the
centre of gravity be fixed, we find (by art. 85.)

energy =I! (%(Awloa—i— Bw,S+Cayy).

Now it will be shown in Sect. V. that
dow dp d
7=Da.c, Z=De.f3, d—Z=Dw.7,
where w=w,0.}w,3}Fwyy.
Hence, performing the differentiation, and observing that
D-'a=p.y, D"'B=y.¢, D-'y=e«.B, and D-'D=1,
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we find energy =AB.y+ B2y o4 C22

~+o.(Aw,z+Ba,S+4 C“'s?)‘
Lastly, if we perform the lateral multiplication denoted by «. here, we find

energy ={ dw'—}-(C B)wzws}ﬁ y
+{ dwg“l"(A C)“’S‘"l)?’ &
+H R+ B—A)0s,)s

I need not point out the meaning of this formula in relation to EULER’S equations for
a rigid body.

(88.) General Ezpression for the “Vis- Mortua” or < Dead Pull” on a Rigid Body.
—1I may use the almost obsolete word * Vis-Mortua” (which has been so well trans-
lated by the familiar expression ©“ Dead Pull”)in the sense in which it was originally
employed to denote simple pressure or impressed force. 1 shall therefore designate
the total mechanical effect of the impressed forces acting on a rigid body as the Vis-
Mortua or Dead Pull on that body. If U denote the force acting at the point (%), we
have, therefore, by art. 74,

Vis-Mortua=3(U+u.U) :
this of course is the same expression as that in art. 77.
If we put, as before, u=wu-}, this expression becomes

SU4u.2U+424.U0.

Here SU4u.3U is the symbol of the force 2U acting at the point («), and 2«'.U is
(art. 75) the symbol of a couple.

(89.) Asan example, the result of which I shall require in Sect. V., I shall calculate
the Vis-Mortua of a rigid body acted on by the attraction of a distant particle m/,
taking the centre of gravity of the rigid body as origin, and «, 3, y as the directions
of the three principal axes; assuming also #' to denote the distance of w/, r' the
magnitude of ', and r that of w.

Here U is a force acting along the line joining the two points (#) and («'), and
inversely proportional to the square of the magnitude of that line. The line alluded

to is #' —u, its magnitude is v/ (u'—u) X (¢' —u), and its direction therefore is
: !

u—u
V{d—u) x @ —u)
_ (' — )
Hence U=mm' 0 X W=
Also {(W—u) X (& —u)} F= (' X U =20/ X u+tu X u)?

=(r""—2u' X u+tr?)"%
1 3u xu
=7—J3-<1 +-‘;r2—‘> nearly.
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Heunce, observing that ».«=0, and 2mu=0, we have
3 !
Eu.UZ%ngEm(u’ Xu)(u.u)

= —%ﬂgu’. {Zm(v X u)u}.
Now Zm(u' X u)u=23m(xz'+yy'+z2') (xe+yB-+27)
=(3mz*)ra+ (Zmy*)y B+ (Smz?)z'y, by properties of principal axes,
=(2mr*—A)d e+ (Zmr*— B)y B+ (Zmr*—C)z'y
= (Zmr*)w — (Ar'e+ By'8+4Cz'y).

Wherefore, observing that «'.u'=0, we find

Su. U=3Tnfu' .(A2'e+By'3+4Cxz'y).

r__ !

Also 2U=2mm' y?,a—u (neglecting 3—’;?—‘ for obvious reasons)
. '141 M= Em
=Mm'5 {Em u=0.

Hence we have ’
!
Vis- Mortua=Mm/ 7% +%%u’ .(Ade+By'B4Czy),

!
which expresses a force Mm/ ;jg acting at the origin, and a couple,

3m! | | ! '
—i5 U . (Az'e+4By' B4 Cxy).
If we perform the lateral multiplication indicated by («.), this couple becomes
!
%{(C——B)y’z’ﬁ.y—}-(A—C)z’:v’y.u-{—(B—-A)x’y’a.B},

which gives the three well-known couples in the theory of Precession and Nutation.

I1V. ArrricatioN oF THE SymBoLIiC ForMs To DETERMINE THE CORRECTION FOR THE
Earte's RoraTiON IN PROBLEMS RELATING TO MOTION ON OR NEAR THE EARTH'S
SURFACE.

(90.) The best way of defining that which is commonly called the Centrifugal Force
appears to be the following, viz. that it is an imaginary force which may be introduced
as a correcticn for the error of not taking into account the rotation of the radius
vector . Suppose P to denote the accelerating force acting along r, and let us for a

., (db
moment forget that » has an angular velocity (ﬂ)’ then we put
dr
d—ﬂ:P;
but this is erroneous, and we must correct it for the rotation by adding to P the
diy? . o
term r (%) , as is well known. Hence we may regard the centrifugal force as a cor-

rection for neglected rotation.
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But it only corrects the error so far as the motion along r is concerned ; another

correction (supposing still the rotation is neglected or forgotten) is necessary to be
. . . . 1d (r?db

applied at right angles to r, namely, the imaginary force —~— (r-dT . Thus the true

and complete correcting force is the resultant of the two forces
2
r‘**gg, and _%%(% .

It appears to me that the idea here suggested might be applied with great advantage
to cases of motion on or near the earth’s surface. The beautiful pendulum experi-
ment which made so much noise last year, and the various investigations respecting
it, give great interest to such cases of motion. I propose therefore to investigate
here, by the aid of the Symbolic Forms, the proper symbol of the imaginary force
which corrects completely for the earth’s rotation supposed to be neglected. By
the aid of this symbol, it will be found that the greatest possible simplicity is intro-
duced into investigations such as those relating to the pendulum experiment. It
will enable the investigator to forget altogether the earth’s rotation in framing his
equations of motion, and at the same time to correct his error by the introduction of a
simple term. »

(91.) Let » denote a line pointing in the direction of the earth’s polar axis (north
suppose), and representing, by its length, the earth’s angular velocity. In other
words, let » be the directriz of the earth’s rotation, then (as will be shown in Sect. V.)
it is easy to see, that, if % denote (symbolically) ‘the distance of any point from the
earth’s centre, the velocity communicated to it by the earth’s rotation (if it be fixed
to the earth) is represented by the symbol *

Do.u.
Now let d denote differentiation (of «) on the erroneous supposition that the
earth is fixed, and d the true and complete differentiation ; then the true velocity of

. . 8 . .
the point » is 3—1;, and this must be the resultant of the erroneous velocity (g—:f) and

the velocity (Dw.u) due to the rotation. Hence we have
du du
zz='d7+Dw.u.

The effective accelerating force will be obtained by the true and complete differen-
tiation of the correct velocity, that is,

8 sdu
pr 7t+Dw.u),
d rdu du . .
or %(3;)+Dw.—‘ﬁ (observing that « is a constant),
* For Dw.u denotes a line at right angles to both w and #, and its magnitude is zrsin8; where n is the

magnitude of w, 7 that of 4, and § the angle which » makes with w. Therefore Dw.u is manifestly the velacity
caused in the point « by the rotation w.

MDCCCLII. 2c¢
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. . 3
which, putting for di; the above value, becomes

o +2Dw. %4 Do (Du.u).

Hence if U denote (symbolically) the resultant of the accelerating forces, whatever
they may be, which act on the point (), we find

& d
cEteDe. 4+ Dayu=U. . . . . . . . . (1)

I may observe, in passing, that, since d+(Dw.) represents the complete differentiation
of u, we might have written down the equation of motion émmediately, in the form
d+ (Dw.)}?
! Elﬂ Fu=v,
which, expanded, is identical with (1.).
Now, if we had forgotten the earth’s rotation, we should have put, instead of (1.),
d%u
"_i't'g—-:U.
Hence it appears that, if we neglect the rotation in forming the equation of motion,
we may correct the error, by supposing that there is the imaginary force

d
..{21)@.3§+(Dw.)2u}. e @)
acting in addition to the real force represented by U ; for on this supposition we find
d%u di
d—tg—=U—2Dw.71:——(Dw.)2u, R B

which is equivalent to (1.).

As regards terrestrial problems, however, the expression (2.) admits of an important
simplification ; for the accelerating force of gravity (g), which of course is included
in U, is supposed to be the resultant of the earth’s attraction, and the common centri-
Jugal force. Now this common centrifugal force is that which is conceived to be in
action upon a particle rigidly connected with the revolving earth; in other words, it

. d . .
is what (2.) becomes when 73:0. Wherefore the expression for the common centri-

Jugal force is
—-Dw)w. . . . . 00000 (4)

As this therefore is included among the forces which U represents, it ought to be
omitted in the equation (3.). Thus we find that

du
——2Dwzﬁ(5)

is the force which must be supposed to act on the point (u) as @ correction for the
neglected rotation.
We may, therefore, in all problems of motion relative to the earth, forget altoge-
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ther the earth’s rotation, provided we introduce the force (5.), in addition to the ac-
celerating forces, whatever they may be, which are really in action upon the point (%);
it being understood that the common centrifugal force is allowed for in g.

(92.) In (5.) % is the apparent velocity of the point u (apparent, that is, to an ob-

server unconscious of the earth’s motion) ; and if n denote the earth’s angular velo-
city, and o/ the direction of the polar axis, w=ny'. Thus (5.) becomes

O ()

. . du .
Now this represents a force at right angles to %' and —Jl;, i. e. to the polar plane in
which the apparent velocity is taking place at the instant £. Also the magnitude of

this force is 2n times the apparent velocity (i—i;) multiplied by the sine of the angle

it (%) makes with the polar axis (y).
Fig. 36.
(93.) This force may be expressed with reference to horizontal and ¢

vertical coordinates at any place, as follows :

Let O be the place, ¥ the vertical at O, and then the plane (¢03)
will be horizontal : also let & be chosen so as to lie in the meridian [ ——]
plane; and let / denote the latitude of O (7. e. the angle y' makes \ﬂ
with ). Then

Y=acoslt+ysinl. . . . . A V8|
Also if we take « to denote the distance of the moving pmnt from O at any time ¢,
and therefore put

u=xetyB4+y, . . . . . . . . . . . . (8)
% will be the same as the %* in (6.), for all that we have to express by % is the ap-

parent velocity of the point u.
Hence, differentiating (8.), and performing the operations indicated by 2zDy'., (6.)
becomes

—2nD (e cos I4y sin l). (dt“+ tﬁ"'dt”

or 2”{(37 sin l)u+ <_?l? sin l+EZ cos l)ﬁ— (—% cos l)y}. N 3
Hence the ordinary equations of motion will be

dﬂ -
d; —X+2”dt sin /
Ty Y2 142 l 0
= "dt sin /4 ndt cosit p . (10.)
d?
d;——- Z_2”dt cos / J

¥ Originally » was measured from the earth’s centre.
2c2
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where X, Y, Z represent the accelerating forces, whatever they may be, that are in
action on the point .

(94.) The formation of these equations, here given, affords a good example of the
use of the symbolic form u.v: but, to illustrate the method more clearly, it will be
worth while to employ, in some particular problem, the general equation,

2,
TemU—2nDy M L. L1
which includes the three equations (10.), U denoting Xe+4YB-+4Zy. The problem I
shall choose will be that of the Pendulum Experiment. Fig. 37.
Let QP represent the string at any time £, QO its vertical position, ¢ its @

length; then

Q
0Q=cy, OP=u, PQ=cy—u, df ler

Q

also direction of PQ-—W - P
w0

Let T denote (in magnitude) the tension of PQ; and then, since the dibectiqn of
T is that of PQ, the symbol of the tension is T f’_)’%‘_?f ; to which if we add —gy, the
symbol of the force of gravity, we find

U=T L —gy=(T—g)y—¢u.

Hence (11.) becomes

pE T
E=(T—g)y——u—2nDy. dt N ¢ N

Now, for greater simplicity, I shall suppose that » represents a small excursion,
and ¢ a long string. On this supposition we may regard » as always horizontal.
Also, if we put for o' its value (7.), the equation (12.) becomes

d?u . du T dv
{EF+2n sinfDy .z —— }+{2n cosDe. %—(F—g)y}z
) . du . . du . . du . .
Hence, since —; is horizontal, De:.—7 is vertical, and D”'EZ is horizontal. The equa-
.

tion (12.), therefore, is separated into two parts, horizontal and vertical, which,
being equated to zero, we obtain

d2u . du T
7#"'2"51“1])7‘%_?“:0 N (£ B
. du
(l‘——g)y:anolea.Ey. Coe e e e L (14)

We have to substitute for T in (13.) its value derived from (14.), which on account
of the smallness of », and the fact that T is multiplied by g— in (13.), gives T=yg for a

first approximation. Hence (13.) becomes

d% . du
gﬁ+2nsmlD7.7‘E—‘g*u=O. I ¢ 1)
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Now, here, the operation. (Dy.) is performed only on lines at right angles to y;
we may therefore put /—1 for (Dy.) (see art. 55) ; and thus (15.) becomes

d%u . —
Etamsinly/=T7—%u=0. . . . . . . . (16)

The roots of the equation '
AN . —rd
(Ift) +2nsin I/ — l(Ef -—-%:0

are —nsinly/—14A/ —n*sin® l-—%,
or (—nsinltm)y/—1,

if, for brevity, we put »*sin® l-l—‘%:m?. Hence the solution of (16.) is

wm=gMIEIWI APVIIL By (17)

The constants A and B here denote two arbitrary lines in the horizontal plane.
If the earth were fixed, the form of the solution would have been

u=Ag"V=' - BV {for then m2=€c}-

Now ¢~"=:v=1% indicates a uniform backward rotation of A¢™v=1+ B¢+~ with an
angular velocity » sin /. Thus it appears that the apparent curve of motion of the
pendulum will be the same form as if the earth were fixed, only there will be a slow
angular regression of the whole about the vertical as axis at the rate nsinl per
second.

I may observe, in passing, that the simplest interpretation of (17.) is this; that the
motion of the point (%) results from the superposition of two motions,

—nsinl)t /=1 —(m+nsinl)t/=1 ,
Ae(m nsin )t/ land BE (m+nsinl)ty/ l,

and these are two uniform circular* motions, the former that of the line A forward
with an angular velocity (m—mn sin /) ; the latter that of B backward with an angular
velocity m—mn sin /.

(95.) As my object is simply to exemplify the application of my notation, I shall
not proceed to a second approximation; which however is very easily effected by
substituting for T in (13.) its complete value given by (14.), after having put for « in
(14.) the value (17.) just obtained. The result is important, especially as regards
motion near the equator.

* Ag?v=1 denotes A turned out of its position (round ) through an angle 0, and therefore u=Agntv=1 is
an equation indicating that the motion of the point («) results from rotation round the origin at the distance A,
the angle af being described in the time ¢,
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V. ApprLICATION OF THE SymBoLic FORMS To DETERMINE THE MoTION
oF A Ricip Bopy aBour 1rs CENTRE oF GRAVITY.

(96.) The symbolic forms ».v and » X v are singularly useful, as it appears to me,
in all cases of the Motion of a Rigid Body in space, especially as regards Rotation.
Considerable simplification is also gained by employing de, dB, dy to denote the an-
gular motions of the three axes «, 8, y. I shall now proceed to consider this case.

I shall take «, 3, ¥ to denote three rectangular directions fixed in the Rigid Body,
and z, y, 2 the coordinates of any particle (m) of the body. On this supposition z, y, =
are constants as regards #, while «, 8, y are variables. The origin is the fixed point
(the centre of gravity, namely,) about which the body moves. = denotes the distance
of m from the origin, and therefore -

u=xat+yBtzy. . . . . . . . . . . . . (L)
(97.) Now the rigidity of the body requires that the velocity (%) of m shall be at

right angles to « always; this may be expressed (see art. 44) by putting
du

EZL“-Dwu,(?)
where » denotes some unknown line. It may be shown, as follows, that « is a func-
tion of # only, or, in other words, that » is the same for all points of the body, i. e. for
all values of w.

Let («/) be any point in space, and let us assume, as we may, that this point moves
always with a velocity Dw.%'; then

!

%:Dw.u'; . . . . . . N . . . . é . (3-)
and hence, by (2), '

! —

W) Do(lmw). o o o . (4)

Now #' —u is the line joining the two points (x) and («), and the square of its
length is

(u"-u) X (“l"u)’
d,. ! d(u' —u) !
and 7l =) X (U —u)} =2 =—— X (' —u)=0;

I
for (4.) shows that dw 7 ") and o —u are at right angles. Consequently the length of

the line «'—w is invariable.

In precisely the same way (3.) shows (what indeed is otherwise obvious) that the
line #' is of invariable length,

Hence the point () is rigidly connected with the origin and with the point (u);
and consequently («') is a point of the rigid body. Therefore, comparing (2.) and (3.),
it appears that » does not vary when we pass from one point to another of the rigid
body.
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This result is of great importance, and furnishes, in the simplest possible manner,
every formula necessary for determining the motion of the rigid body.
(98.) The symbol w represents, in direction, the instantaneous axis of rotation. For

(2.) shows that, when » coincides in direction with &, —5:0; consequently all the

points of the body which lie in the direction of » are quiescent at the instant ¢.
(99.) The magnitude of w is the instantaneous angular velocity. For,let o/ denote any

. 1 . . de .
unit line fixed in the body at right angles to »; then (see art. 19) 7’; is the angular

. . . do! . . .
velocity, at least in magnitude. But, by (2.), %:Dw.w’; and, since » is at right
angles to ¢/, Dw.<’ has the same magnitude as » (see art. 40.). © Wherefore » has the

. do! S .
same magnitude as ﬁ, and therefore represents the angular velocity in magnitude.

(100.) Hence the result above obtained, namely,
du
F=Dow, . . . . .. .00 4
may be thus enunciated :—the rigid body is, at the time £, moving about a certain
instantaneous axis, with a certain angular velocity; and if we assume « to denote

that axis, in direction, and the angular velocity in magnitude, then the velocity (%)

of any point («) of the rigid body is obtained by performing the operation (Dw.)
upon .
(101.) If we put
w=wotaftoy, . . . . . . . . . . . (b)
where @,, w,, », denote numerically the projections of the line » on the three coordinate
directions o, 8, ¥, we find by (4.),

A oDo.utoDButsDya. . . . . . . . (6)

. d . .
Hence it appears that-di: results from the superposition of three angular velocities

w,, @y, &, about the axes e, 3, ¥ respectively : for, by (4.), D(#,¢) .% (or @,Dx.u) denotes a

velocity of the point (») resulting from an angular velocity », about the axis «,

@,DB.% that resulting from w, about 3, and #,Dy.u that resulting from w, about y:

and (6.) shows that the actual velocity of w is the resultant of these three velocities.
“If we put for « its value zo+4yB-+=2y, (6.) becomes immediately

%: (0,y—ws2)y 4 (9,3 — &y e (w2 —,2) B

Whence it follows that the velocity of the point (xyz) is equivalent to the three com-
ponent velocities ,3—w,y parallel to x, w,x — w,x parallel to y, and v,y —a,x parallel to 2.
(102.) The theory of the composition and resolution of angular velocities is com-
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pletely expressed by (4.); for, if it be required to find the effect of the superposition
of two angular velocities represented by » and &', we find by (4.) that the velocity
produced by « in any point () is Dw.u, and that produced by &' is D&'.. The actual
velocity of («) will be the resultant of these, that is,
Dwo.u+Dd ., or D(w-+a'). .

Now by (4.) D(w}4').u is the effect of an angular velocity represented by w-+o'.
Hence it follows that the two angular velocities » and ' superposed produce the same
effect as the angular velocity #+«'; and w-4' is the third side of the triangle formed
of the two lines » and &

(103.) The equation of motion of a rigid body acted on by any forces (about its
centre of gravity) is easily obtained as follows.

Let U denote the accelerating force in action on m, i.e. at the point (u); then,
by Sect. III., we have

d*u
Smu. W:Zmu.U,
which is the same thing (see art. 86) as

%(2mu.%>=2mu.U,. N 8|

Now, putting for » its value (1.), and supposing that «, 3, ¥ are the principal axes
of the body, we find

d d. d
Emu.é-;zz (ac . 3;) Sma® - (B ;g) Smy*+ (Dy %) >ms?,
But, by (4.) and (5.),
d.
£=Dw.w= —wytw3;
d
Du.é—it;f:wmﬂ-}-way*.

Similarly, DB.%:wsy-l-wla,

and D'Y'%—Z=wl“+w2ﬁ 5
whence, introducing D, we find
i
SmDu .-d—l;= (@B wyy) Zma*+ (wy +w,2) Zmy*+ (0,0 w,8) Zmz® = Aw,a+Bw,S4 Cayy,

where A, B and C denote respectively 3m(y*+22), Sm(z*+2%), Zm(2*+y?).
Thus (7.) becomes '

2 (Avot+Bof+Cog)=3mDu.U. . . . . . . . @)

* Or thus: Du.%:Da.(Dw.u):-(Dan.)%:w-—(wxaa)a=w1a+wzﬁ.
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This is the general equation of motion of a rigid body about a fixed point. It
gives the three well-known equations immediately by equating the coefficients of
@, 3, v*. But the equation (8.) as it stands is more available for the solution of
problems, and furnishes results much more simply, than the three equations alluaded to.

Along with (8.) we must employ the equation
du

Z=Dow. . . .. 0000 (9)
And these two are completely equivalent to the six equations commonly employed.

(104.) The line represented by the symbol Aw,z+Bw,8+Cwy has a remarkable
relation to the instantaneous axis w,a+w,3+4a,y, which may be thus interpreted.
Suppose the rigid body to undergo a distortion or unequal expansion of such a nature,
that all lines in it parallel to « become A times longer than before, all lines parallel to
8, B times longer, and all lines parallel to y, C times longer. The effect of this will
be to convert the unit « into Aw, 3 into B@, ¥ into Cy; and thus the line w,e4w,8+}ayy
will be converted into Aw,z+Bw,34Cw,y. This latter line, thelefme, I may call the
Distorted Instantaneous Axis.

(105.) The distortion here alluded to is one of great importance to be noted, because
it indicates an operation which has immediate connection with many remarkable
physical phenomena as well as with various theories in Solid Geometry. As regards
its geometrical meaning, if we conceive the rigid body to be a solid composed of
spherical shells having a common centre at the origin, each shell will be converted
into an ellipsoid by the distortion, The sphere whose radius is unity will be changed
into an ellipsoid whose axes are Az, B3, Cy; and the axes of the other ellipsoids will
be parallel and proportional to these.

‘The line represented by the symbol

Aa+Bp+Cy
is an important determining element. If we assume &' to denote what » becomes in
consequence of the distortion, it may be easily seen that &' is a distributive function of
w and Ae+DBB+4Cy; and from this fact a number of curious symbolical relations
may be deduced. But I must not dwell upon this subject of distortion now further
than my immediate purpose requires.

(106.) Using &' for brevity to denote the distorted instantaneous azxis,

Aw,e+Bw,B-+Cayy,
I may observe that the equation (8.), that is,
!
%—=2mDu.U, N ¢ 1

~ * Observing that %:Dw.a, @=Dw.,3 d'y—Dw v, we find the coefficient of 7 in the first member to be

dw3 +B—A)ww,;

and putting U=Xea+ YB3+ Zy, we find, in the qecond member,
ZEm(zY —yX).
MDCCCLII. 2D
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gives the velocity of the point (/) in space, the differential letter, d, denoting absolute
change of position. But it is often important to determine the motion of this point
relatively to the rigid body ; and this may be done as follows :—
Let us assume 8 to denote relative change of position with reference to the rigid
body; then it is evident that
! !
%:%%—I—Dw.w’; B e

for the velocity of the point (») is the resultant of two velocities, namely, that relative

to the body, and that arising from the motion of the body; the former is %wt-, and the

latter, by (9.), is Da.s/.
Hence, and by (10.), we find

O’ , v
Z=2mDu.U-Dw.s/. . . . . . . . . (12)

"This equation gives the velocity of the point (/) relatively fo the rigid body.

Now it is clear that if we can solve (10.) and (12.) the motion of the rigid body is
determined ; for we shall then know (by (12.)) how the line &' moves in the rigid body,
and by (10.) how &' moves in space; and thus, by the intervention of &/, we shall
obtain the motion of the rigid body in space.

(107.) As an example of this I shall take the case of the earth attracted by the
sun, and point out briefly how (10.) and (12.) determine the motion of the polar axis.
In this case A=B, and C=(1-42)A, when A is a small number : also the instantaneous
axis » very nearly coincides in direction with the polar axis y. Hence, and by art.

89, we have
o' =A(w+Aayy)

. 3m ,
2mDu. U=A—zDu'. (' +As'y).

Here o' denotes (symbolically) the sun’s distance, 7' is the magnitude of #/, m' the
sun’s mass.
Thus, observing that D«'.%' and Dw.w are zero, (10.) and (12.) become

do | dwyy) .3m', ‘
i+ dfy =z’ Dul.y

b} b} 3m’
£+ x%?;’i) = )\—%—z’ Du'.y—2rw,Do.y.

In the terms multiplied by A we may approximate on the supposition that y is fixed
and w=ny, where n is the earth’s angular velocity about its polar axis. This reduces
the two equations to

dw _3ml o
B‘z= WZ’DN'.?’. e ey e e e e e (13.)
3w _3m

a=hmeEDuly. oo oo (14)
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Now let us take new directions (¢, 8',9/) so, that o/ shall coincide for a moment with
the polar axis ¢, while the plane («'y) contains the sun’s distance #'; then
W=ald 42y
D .y=—af';

Sw
= (—k;,gnz b4 )ﬁ'

The coefficient of (' here, being multiplied by A, may be regarded as invariable
during one day, inasmuch as 2’ and 2 take a year to go through their values : also, since
8 implies that the earth is considered as fixed, the sun, and therefore the direction 3,
must be supposed to revolve about y from east to west, through 360° in the day.

wherefore (14.) becomes

The velocity £ therefore is constant in magnitude but changes its direction (which

is always perpendicular to y) uniformly through 360° in the day. It appears there-
fore that the point (») describes a daily circle, and therefore the line » describes a
daily cone about y. From this it follows (observing that » and y make a very small
angle with each other), that the mean daily angular motion in space of y and that of

the direction of » (manifestly g very nearly) are identical, Wherefore

1dw A3m
%=5dt 2 52Dy, by (18.);

or, since =u' Xy,
dy A3nw
T WXy)Duy. oo L0 0oL (15)

If now we assume 7' to be at right angles to the plane of the ecliptic, and &' to
point towards the first point of Aries, we have

u'=7'(c cos n't+3 sinn't),
. s . oy s m
where 7't is the sun’s longitude, n” being -5

Wherefore, observing that y is at right angles to ¢/, we find

fg il }‘(yx B') sin 7't (cos 'tDe .y sin n'tDB’ 7).

If we integrate this between the limits 0 and 7:7’, we find the annual variation of v,

which therefore is
3nfar

w (v xB)DBy.

This represents in magnitude and direction the actual space described by the
point (y) in one year, 7. e. the angular motion of the pole, or the precession. If =
denote the obliquity of the ecliptic,

y=¢ cos w4 sin =,
2p2
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and S yXf'=sinw
Dg'.y=0d' cos w.
Wherefore the annual precession of the pole is

3”’)\’1’ . ]
(TCOSwSln‘w' a,

o' indicating that its direction is perpendicular to the solstitial colure, and retro-
grade as regards the sun’s motion.

I have gone through this example because in every step it shows the use of the
symbolic forms.

VI. ArpricaTION OF THE SymBoLic ForMs 1o Paysicar Oprrics.

(108.) The use of the symbolic forms «.v and uXxv in Physical Optics is very
remarkable ; but as this paper is already so long, I can only just allude to the
subject.

In the Transactions of the Cambridge Philosophical Society I have shown (in a
paper read March 17, 1847), that if v denote the displacement at the point () of an
uncrystallized medium, where

u=za+yB+2y
”=E“+”ﬁ+§79
and if A and B be two constants (namely, the coefficients of direct and transverse
elasticity) ; then
. -39 . 2 . e
=B (st gt az)r+(A—B) (agtBrtre) (+E+E)

And this result I obtained by merely considering the disarrangement of the medium
about the point u, without any assumption respecting the constitution of the medium,
except that it possessed direct and transverse elasticity.

Now if we employ the letter Q to denote the operation

d d d
L S

the above equation, by the aid of the symbolic forms, immediately assumes the simple
form

dQ
F=AQQX0)—BOQ)w. . . . . . . . (1)

The symbol 2 has a very important signification when written before any quan-
tity, U, which is a function of x, y and z: for the direction of the line QU is that
direction perpendicular to which there is no variation of U ; while the magnitude of
QU is the rate of variation of U in that direction, i. e. as we pass from point to point
of the medium in the direction of QU.

Again, 2 X v denotes the rarefaction of the medium, at the point (), resulting from
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the displacements represented by v; while Q.v denotes, in magnitude and plane, the
lateral disarrangement of the medium. :

It is clear, therefore, that the symbolic forms #%.v and « x v must be of great use in
Physical Optics ; indeed the facility they give of following out investigations respect-
ing undulatory movements is so great, that the whole subject of reflexion and re-
fraction, in crystallized as well as in uncrystallized media, and the mathematical ex-
planations of the phenomena connected with polarization, double refraction, &c., may
be reduced to a state of simplicity which could hardly be expected in such a difficult
subject.

(109.) In the paper above alluded to, I obtained also the equation of vibratory
motion generally, for any crystallized medium, without any of those assumptions
which mathematicians have found it necessary to make in order to render the inves-
tigation manageable ; especially, without assuming the vibrations of a plane polarized
ray to be in the plane of polarization, which appears to me to be a highly objection-
able assumption. By the aid of the symbolic forms, the general equation of vibratory
motion, where the transmission of transverse vibrations is possible, is thus expressed :

dtg = (A “dx+A2Bd +A3'Yd )(Q X v)

+DQ. {(B%lz )+(B3dx Bll;i)ﬁ'{'(Bld_/ 2dx } - (2)

Here A,, A,, A, are coefficients of direct elasticity, corresponding to A in equation (1.);
and B,, B,, B,, &c. are six coeflicients of transverse elasticity, corresponding to B
in (1).
FRESNEL'S hypothesis, that the vibrations of a plane polarized ray are perpendicular
to the plane, makes
B,=B, B,=B, Bs=B,
while the hypothesis, that the vibrations are iz the plane of polarization, makes
B,=B,, B,=B,, B,=B,..
On the former hypothesis the equation becomes
2,
= (A HABG+AYE) (@ x0)— (DR .V (Bia+Bab+Bl); . . . (3)

while, on the latter, it becomes

= (A ABT+Ay) (@)

_(DQ.){B =% )e+B.(5%—7)8+B, (%~ 2 } C e (@)

For transverse vibrations the rarefaction (2 X v) (see above) is zero, which further
simplifies (3.) and (4.). By equating the coefficients of «, 3, ¥ in (4.), thus simplified,
we obtain MacCuLLaeH’s three equations. The equation (3.) coincidesin every way
with FrREsNEL’s theory.



206 REV. M. O’'BRIEN ON SYMBOLIC FORMS.

_The conception of distortion alluded to in Sect. V. applies to (3.) in a very remark-
able manner; for if we put

' d d d
Ax“%'l' Blﬁa—y'i'cﬂ/%: Q’>

B« "*‘Bzﬂﬁ'3 + Bs?’é’z v,
then Q' is Q distorted by the line Aje+A,B+Ayy; and o' is v distorted by the line
B,z+B,8+Byy. In using the expression “ distorted by,” I anticipate a signification
which I hope to explain in a future paper; but the fact is, Q' is a distributive function
of Q and Ax+4A,B+4A,y (see art. 105), and therefore, symbolically, Q' is-Q multi-
plied by Aja+ALB+Ayy.
Now the equation (3.) becomes

2,
Y= /(Q2.0)— (DR,

or, for transverse vibrations, simply
d%
B (D).

But I must reserve the consideration of this remarkable equation, merely remark-
ing here that it shows very clearly how the force brought into play by the disarrange-
ment of a medium resulting from transverse vibrations is altered by the crystalliza-
tion. In the uncrystallized medium the force is, by (1.),

— (DQ.)*(Bzx+BrB+BG),
and in the crystallized medium it is

—(DQ.)*(Bgz+BaB+Bly).
In one case it is found by performing the operation — (D{2.)’ on v, in the other by
performing the same operation on v distorted as by the threefold expansion of the
medium, consisting of a drawing out in the direction « in the proportion of B, to B,
in the direction 38, of B, to B, and in the direction v, of B; to B.

Upper Norwood, Surrey,
April 19, 1852.



